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Joint work with Sebastian Brandt, Yi-Jun Chang, Christoph
Grunau, Václav Rozhoň and Zoltán Vidnyánszky, should appear on
arXiv tomorrow.
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The aim of his talk is to introduce a new type of acyclic regular
Borel graphs, that we call homomorphism graphs, and show some
applications in descriptive combinatorics.

The motivation comes from the adaptation of Marks’ method to
the LOCAL model of distributed computing, which was itself
motivated by recent results of Bernshteyn.

Rather curiously, this adaptation gives a better insight back in
descriptive combinatorics.



At the end of this talk we will see a new proof of the following
result of Conley, Jackson, Marks, Seward, and Tucker-Drob.

Theorem (CJMST-D)

For each ∆ > 2, there is an acyclic ∆-regular hyperfinite Borel
graph G such that χB(G) = ∆+ 1.
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The plan:

▶ Marks’ determinacy method,

▶ adaptation to the LOCAL model,

▶ homomorphism graphs,

▶ general result about colorings,

▶ the application.
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Theorem (Kechris–Solecki–Todorcevic)

Let G be a Borel graph of degree bounded by ∆ < ∞. Then
χB(G) ≤ ∆+ 1.

Theorem (Marks)

Let ∆ > 2. Then there is an acylic ∆-regular Borel graph G such
that χB(G) = ∆+ 1.
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Let T∆ be the infinite rooted ∆-regular tree with a proper edge
∆-coloring. That is, the right Cayley graph of the free product of
∆-copies of Z2 given by the standard generating set (γ1, . . . , γ∆).

Let G be the Borel graph with the vertex set

X = {x ∈ NT∆ : x is a proper vertex coloring of T∆}.

For i ∈ ∆, two vertices x , y ∈ X are connected with i-edge if
moving the root along i-edge in T∆ modifies x to y . Equivalently,
if the left shift action by γi moves x to y . i.e., γi · x = y .

It is easy to see that G is ∆-regular, does not contain loops, but it
might contain cycles or multiple edges.
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Borel chromatic number ∆+ 1.

▶ Define a two-player game G(ℓ, i) as follows. Label the root of
T∆ with ℓ ∈ N. In the k-th round, first Alice labels vertices of
distance k from the root on the side of the i-edge. After that,
Bob labels all remaining vertices of distance k , etc.
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▶ In the game G(ℓ, i), both players must ensure that the
produced labeling satisfies x ∈ X , i.e., x is a proper vertex
coloring of T∆.

▶ Suppose that χB(G) ≤ ∆ and fix a decomposition
{A1, . . . ,A∆} into G-independent Borel sets.

▶ We say that Alice wins if x ̸∈ Ai .

Proposition (Marks)

For each ℓ ∈ N there is i ∈ ∆ such that Bob has winning strategy
in G(ℓ, i).
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By pigeonhole principle, there are ℓ0 ̸= ℓ1 ∈ N and i ∈ ∆ so that
Bob has winning strategy for both G(ℓ0, i) and G(ℓ1, i). Playing
these strategies against each other produces x , y ∈ Ai that are
connected by an i-edge, a contradiction.
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There are similar results in the setting of the LOCAL model.
Namely, on the class of finite trees of degree bounded by ∆, the
∆-coloring problem cannot be solved in O(log∗ n) rounds. What
does that mean?

In the LOCAL model, we view vertices as computers and edges as
communication links.

▶ each computer runs the same algorithm,

▶ in each communication round, all nodes send messages of an
arbitrary size to their neighbours (in parallel),

▶ the LOCAL complexity of the algorithm is t ∈ N, if each
computer outputs its color after t-many communication
rounds.

In order to make this non-trivial, we need to break symmetries!!
Unique identifiers.
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In another words, for every local rule A of locality O(log∗ n) there
is a finite tree T of size n with vertices labeled with unique
identifiers from {1, . . . , n} such that A fails to produce ∆-coloring
when applied on T .

The original argument used technique called round elimination
developed by Brandt and others.

By the result of Bernshteyn, this follows also from the result of
Marks.
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Adaptation of Marks

Is it possible to directly apply Marks’ technique?

Suppose for a contradiction that there is such a local rule A.

Fix some neighborhood of the root in T∆ of diameter O(log∗ n).
We need to produce unique identifiers in such a way that A fails to
output ∆-coloring (around the root). What if we play the games
G(ℓ, i) with the additional difference that ℓ ∈ n, the game stops
after O(log∗ n)-many rounds and the produced labeling has to be
injective (not just merely coloring).

Why does this not work? Injectivity is NOT preserved under gluing
strategies together!
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Main idea: ID graphs

Let (Hn)n be a sequence of graphs with edge ∆-labeling that
satisfy the following:

▶ the girth of each Hn is at least O(log∗ n),
▶ the size of each Hn is at most n,

▶ each vertex is adjacent to at least one edge of each label from
∆,

▶ for each i ∈ ∆, the graph H i
n (the restriction of Hn to i-edges)

has the independence ratio at most 1/∆.

Such a sequence of graphs can be constructed using the
configuration model from the theory of random graphs.
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As the graphs Hn have large girth, we get a version of Marks’
result:

Proposition

For each v ∈ Hn there is i ∈ ∆ so that Bob has a winning strategy
in G(v , i).

In another words, we produce a labelings cn : Hn → ∆ for each n.

To use the second part of the argument we need to find an i ∈ ∆
and an i-edge of Hn that spans two vertices in c−1(i).

We have that one of c−1(i) must be bigger than n/∆, and
consequently must span an edge labeled with i by the assumption
on the independence ratio. The rest of the proof is the same.
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We fixed a sequence of auxiliary graphs with edge ∆-labeling, large
girth and small independence ratio (Hn)n.

▶ In the original construction, we had complete graph on N.

We use a modification of the games so that the players produce
homomorphism to Hn.

▶ In the original construction, the players constructed colorings,
i.e., homomorphism to the complete graph on N.

We use the games to construt a map c : Hn → ∆.

▶ In the original construction, we constructed a map c : N → ∆.

We use the games again to show that if Hn has small
independence ratio, then A cannot be a ∆-coloring algorithm.

▶ In the original construction, we used the pigeonhole principle.
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Let H be a locally countable Borel graph with a Borel edge
∆-labeling. Define the graph

Home(T∆,H)

that has as a vertex set the set of all homomorphism from T∆ to
H (that preserve the edge labeling) and two homomorphism x , y
are connected by an i-edge if moving the root along the i-edge
transformers x to y .

The graph H is called the target graph and Home(T∆,H) is called
the homomorphism graph.
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Basic results

Observation
Suppose that the graph Home(T∆,H) is non-empty.

▶ Home(T∆,H) is ∆-regular.

▶ If χB(H) ≤ ∆, then χB(Home(T∆,H)) ≤ ∆.

▶ If H is acyclic, then so is Home(T∆,H).

▶ If H is acyclic and hyperfinite, then so is Home(T∆,H).
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numbers of the target graph and the homomorphism graph, we
make few remarks:

▶ It is possible to define the games G(v , i), where v ∈ H and
i ∈ ∆, in a similar fashion as in the finite setting.

▶ As we use the Borel determinacy theorem the coloring
c : H → ∆ will not be Borel, in general, but (as we call it)
weakly provably ∆1

2. Every such set has the usual regularity
properties!

▶ Analogous to the independence ratio is the following notion:
the edge-labeled chromatic number of a graph H with edge
∆-labeling, denoted as elχ(H), is either ∞, or the minimal
n ∈ {1, 2, . . . } such that there is a decomposition of the
vertex set into sets {A1, . . . ,An} so that no Aj spans edges
with all labels. We define Borel, Baire etc version of
edge-labeled chromatic number in the obvious way.
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every i ∈ ∆. Then

elχwpr−∆1
2
(H) > ∆ =⇒ χB(Home(T∆,H)) > ∆.

For example, elχwpr−∆1
2
(H) > ∆ if the Baire edge-labeled

chromatic number, elχBaire(H), is bigger than ∆.



Application

Theorem (CJMST-D)

For each ∆ > 2, there is an acyclic ∆-regular hyperfinite Borel
graph G such that χB(G) = ∆+ 1.



Application

Theorem (CJMST-D)

For each ∆ > 2, there is an acyclic ∆-regular hyperfinite Borel
graph G such that χB(G) = ∆+ 1.

Proof.
Let H be a (restriction to a comeager set of a) version of the
graph G0 with a suitable edge ∆-labeling.



Application

Theorem (CJMST-D)

For each ∆ > 2, there is an acyclic ∆-regular hyperfinite Borel
graph G such that χB(G) = ∆+ 1.

Proof.
Let H be a (restriction to a comeager set of a) version of the
graph G0 with a suitable edge ∆-labeling. Then H is acyclic,
hyperfinite and

elχBaire(H) = ∞ > ∆.



Application

Theorem (CJMST-D)

For each ∆ > 2, there is an acyclic ∆-regular hyperfinite Borel
graph G such that χB(G) = ∆+ 1.

Proof.
Let H be a (restriction to a comeager set of a) version of the
graph G0 with a suitable edge ∆-labeling. Then H is acyclic,
hyperfinite and

elχBaire(H) = ∞ > ∆.

Taking G = Home(T∆,H) works as required.
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▶ connections to hyperfiniteness?

▶ limitations of this method (see our paper for various little
changes for different applications)?

▶ generalization to bigger class of groups?

▶ applications for different local problems on trees?



THANK YOU


